arrow left

International Year of Quantum Opening Ceremony: The Challenge of Developing Quantum at Scale

calender icon
February 26, 2025
clock icon
min read
Events
Share

Quantum’s Next Leap: Insights from the International Year of Quantum Opening Panel


The quantum ecosystem is evolving at an unprecedented pace, and a recent panel discussion at the opening ceremony of the International Year of Quantum (IYQ) provided a front-row seat to its unfolding story. Moderated by Dr. Celia Merzbacher (Executive Director of the Quantum Economic Development Consortium), this panel gathered industry leaders and researchers to explore critical themes around the scaling of quantum technologies for real-world applications.

Participants included:

  • Ms. Katie Pizzolato (IBM)
  • Dr. Krysta Svore (Microsoft)
  • Dr. Rajeeb (Raj) Hazra (Quantinuum)
  • Dr. Gregoire Ribordy (ID Quantique)
  • Dr. Alexander Ling (National University of Singapore & Center for Quantum Technologies)
  • Dr. Takuya Kitagawa (QuEra Computing)

Below are the key takeaways from this dynamic conversation.

1. From Lab Curiosity to Industrial Imperative

Bridging Science and Business

Dr. Merzbacher kicked off the panel by noting how industry “is how science gets out of the lab and into practical applications.” While quantum mechanics has been studied for over a century, the commercial push—especially in quantum computing—has arrived only in recent years. The general consensus among the speakers was that quantum technology must solve real business problems, either by:

  • Doing something faster or more accurately than today’s best classical methods, or
  • Enabling applications currently beyond reach.

Quantum’s Breadth: Computing, Communications, and More

Panelists stressed that “quantum” is not just “quantum computing.” Other fields—such as quantum sensing, precision timekeeping, and quantum-secure communications (QKD, PQC)—play crucial roles. Dr. Gregoire Ribordy highlighted how single-photon detectors and quantum random number generators have reached commercial maturity, while Dr. Alexander Ling described ongoing efforts in Singapore to develop quantum sensors for environmental and geophysical surveys.

2. Why Now? Convergence with AI and Classical HPC

A recurring theme was the synergy between quantum computing, classical high-performance computing (HPC), and—most pressingly—AI. As Dr. Rajeeb Hazra remarked, quantum should not be seen as replacing classical computing. Instead, it will become a new accelerator in heterogeneous data centers, analogous to how GPUs augmented CPUs two decades ago. Dr. Krysta Svore similarly described quantum machines as “providers of new information” that AI can learn from—rather than standalone black boxes.

Key Insight: Quantum as Nature’s Simulator

Dr. Kitagawa underscored how quantum computers excel at simulating quantum systems. Because “nature itself is quantum mechanical,” quantum processors can model processes in chemistry, materials science, and other fields far more directly than classical machines. Moreover, once a quantum device simulates a physical system, classical AI can be trained on that simulation’s outputs.

“We can transform experimental science into computational science,” Dr. Kitagawa noted, suggesting that a well-designed quantum simulator dramatically reduces trial-and-error in wet labs. The potential speedup for scientific discovery could be enormous, shaving months or years off of development cycles for everything from catalysts that convert CO₂ into fuel, to high-efficiency solar cells.

3. Scaling Challenges: Hardware, Talent, and Validation

Hardware Heterogeneity

In quantum computing, no single hardware model reigns supreme. The panel showcased a mix of trapped ions (Quantinuum), neutral atoms (QuEra), superconducting qubits (IBM), and topological qubits under development (Microsoft). Each approach has unique strengths and faces unique hurdles in coherence times, error rates, and scale-up costs. Meanwhile, quantum communications—highlighted by ID Quantique—relies on photonic hardware for QKD and other security protocols.

Workforce: A Multidisciplinary Mandate

Building commercial-grade quantum technology requires systems thinking that blends physics, engineering, materials science, and software. Panelists broadly agreed that the “perfect quantum engineer” does not need a PhD in quantum physics—but does need a solid grasp of classical engineering plus working knowledge of quantum principles.

  • Dr. Takuya Kitagawa suggested that “first principle thinkers” are critical. New hires must be able to filter hype from reality and form independent, evidence-based opinions.
  • Dr. Gregoire Ribordy of ID Quantique noted that hiring managers increasingly seek team members who can translate quantum’s value proposition into terms that non-technical stakeholders understand. This “quantum-literate marketing” is another urgent need.

The Scrutiny vs. Hype Balance

While investment in quantum is soaring, the panel urged more “intellectual rigor” to distinguish feasible near-term applications from longer-term speculation. As Dr. Hazra pointed out, scrutiny is healthy and avoids hype-driven disappointment. Meanwhile, Dr. Katie Pizzolato emphasized the importance of an academic-industry feedback loop: published studies, open platforms, and reproducible results can validate new quantum milestones more credibly than marketing claims alone.

4. Collaboration and National Strategies

Global Ambitions, Local Realities

Many governments have designated quantum as a strategic technology, funneling billions into national quantum programs. The panel was split on whether geopolitical pressures could hamper international collaboration—historically the bedrock of scientific progress. While Dr. Ribordy expressed concern that increasing restrictions and protective policies might dampen cross-border cooperation, others held that scientific collaboration might still flourish despite commercial barriers.

The IYQ Opportunity

One of the core missions of the International Year of Quantum is to foster education, outreach, and an inclusive global dialogue. Several panelists spoke to the importance of face-to-face interactions—especially for early-career researchers—to establish the trust needed for future collaboration. The more that governments, universities, and companies unite around shared objectives (such as net-zero goals, public health, or advanced materials), the faster quantum breakthroughs can transition from lab demonstrations to world-changing solutions.

5. Practical Advice for Businesses Exploring Quantum

1. Think Hybrid and Collaborative

Quantum computing is most likely to be harnessed alongside classical HPC and AI workflows. Businesses should prepare for “workflows” that transfer data between quantum and classical accelerators. No single platform or hardware type will be a one-size-fits-all solution.

2. Identify Real Use Cases Now

Whether it’s next-gen batteries, advanced drug discovery, or complex materials design, the first commercial quantum advantage will likely arise from the simulation of quantum phenomena. If your R&D pipeline relies on complex chemistry or physics-based modeling, quantum is worth investigating—even if only to upskill your technical teams in anticipation of near-future breakthroughs.

3. Bet on Multidisciplinary Teams

Talent shortfalls remain a challenge. Businesses should consider:

  • Training existing engineers in quantum fundamentals through short courses or online platforms.
  • Hiring “bridge roles” with both technical acumen and business savvy to communicate feasibility and manage stakeholder expectations.

4. Validate Through Partnerships and Pilot Projects

Real-world pilots with quantum hardware or cloud-based quantum services provide learning experiences that can inform internal roadmaps. Academic collaborations can also help maintain scientific rigor and connect with cutting-edge theory. 

6. Dr. Kitagawa’s Vision: Accelerating Science Itself

Dr. Takuya Kitagawa’s voice stood out for its optimism about how neutral-atom quantum computers can drastically speed up science. QuEra, the company he leads, already provides access to its analog neutral-atom system—enabling researchers to test quantum simulations today. In parallel, QuEra is deploying a second-generation gate-based quantum computer in Japan, a step that highlights both the growing international demand and the technology’s readiness for broader exploration.

Dr. Kitagawa also envisions a “computational paradigm shift” for experimental science: if AI can learn from large-scale quantum simulations of nature, entire classes of physical experimentation could become more focused and less trial-heavy. That could translate into speedier breakthroughs in materials, energy, and beyond.

“If quantum computers can truly simulate nature accurately, we can reduce the time spent in wet labs and accelerate fundamental discoveries,” he remarked. “That’s what makes this technology so important, not just for individual enterprises, but for society at large.”

Closing Thoughts

Quantum computing, sensing, and communications are poised to redefine how we tackle society’s most pressing challenges. From climate action to drug discovery to supply chain optimization, quantum devices—used in tandem with classical supercomputers and AI—promise breakthroughs we are only beginning to imagine.

Yet the road ahead requires pragmatic steps: building multidisciplinary teams, fostering robust international collaborations (even amidst geopolitical complexities), maintaining scientific rigor, and engaging with real-world business needs. As the panel made clear, we are entering an era where collaboration is key, and where every stride in quantum science opens doors to a new wave of innovation across industries.

The International Year of Quantum stands as a reminder: the time to get “quantum ready” is now. And in the words of Dr. Kitagawa and his fellow panelists, that readiness depends not on one single hero technology or company, but on a global ecosystem of scientists, engineers, entrepreneurs, and policymakers working in concert to harness quantum’s vast potential. 


machine learning
with QuEra

Listen to the podcast
No items found.
You can use the keyboard arrows to navigate between the component buttons
",e=e.removeChild(e.firstChild)):"string"==typeof o.is?e=l.createElement(a,{is:o.is}):(e=l.createElement(a),"select"===a&&(l=e,o.multiple?l.multiple=!0:o.size&&(l.size=o.size))):e=l.createElementNS(e,a),e[Ni]=t,e[Pi]=o,Pl(e,t,!1,!1),t.stateNode=e,l=Ae(a,o),a){case"iframe":case"object":case"embed":Te("load",e),u=o;break;case"video":case"audio":for(u=0;u<$a.length;u++)Te($a[u],e);u=o;break;case"source":Te("error",e),u=o;break;case"img":case"image":case"link":Te("error",e),Te("load",e),u=o;break;case"form":Te("reset",e),Te("submit",e),u=o;break;case"details":Te("toggle",e),u=o;break;case"input":A(e,o),u=M(e,o),Te("invalid",e),Ie(n,"onChange");break;case"option":u=B(e,o);break;case"select":e._wrapperState={wasMultiple:!!o.multiple},u=Uo({},o,{value:void 0}),Te("invalid",e),Ie(n,"onChange");break;case"textarea":V(e,o),u=H(e,o),Te("invalid",e),Ie(n,"onChange");break;default:u=o}Me(a,u);var s=u;for(i in s)if(s.hasOwnProperty(i)){var c=s[i];"style"===i?ze(e,c):"dangerouslySetInnerHTML"===i?(c=c?c.__html:void 0,null!=c&&Aa(e,c)):"children"===i?"string"==typeof c?("textarea"!==a||""!==c)&&X(e,c):"number"==typeof c&&X(e,""+c):"suppressContentEditableWarning"!==i&&"suppressHydrationWarning"!==i&&"autoFocus"!==i&&(ea.hasOwnProperty(i)?null!=c&&Ie(n,i):null!=c&&x(e,i,c,l))}switch(a){case"input":L(e),j(e,o,!1);break;case"textarea":L(e),$(e);break;case"option":null!=o.value&&e.setAttribute("value",""+P(o.value));break;case"select":e.multiple=!!o.multiple,n=o.value,null!=n?q(e,!!o.multiple,n,!1):null!=o.defaultValue&&q(e,!!o.multiple,o.defaultValue,!0);break;default:"function"==typeof u.onClick&&(e.onclick=Fe)}Ve(a,o)&&(t.effectTag|=4)}null!==t.ref&&(t.effectTag|=128)}return null;case 6:if(e&&null!=t.stateNode)Ll(e,t,e.memoizedProps,o);else{if("string"!=typeof o&&null===t.stateNode)throw Error(r(166));n=yn(yu.current),yn(bu.current),Jn(t)?(n=t.stateNode,o=t.memoizedProps,n[Ni]=t,n.nodeValue!==o&&(t.effectTag|=4)):(n=(9===n.nodeType?n:n.ownerDocument).createTextNode(o),n[Ni]=t,t.stateNode=n)}return null;case 13:return zt(vu),o=t.memoizedState,0!==(64&t.effectTag)?(t.expirationTime=n,t):(n=null!==o,o=!1,null===e?void 0!==t.memoizedProps.fallback&&Jn(t):(a=e.memoizedState,o=null!==a,n||null===a||(a=e.child.sibling,null!==a&&(i=t.firstEffect,null!==i?(t.firstEffect=a,a.nextEffect=i):(t.firstEffect=t.lastEffect=a,a.nextEffect=null),a.effectTag=8))),n&&!o&&0!==(2&t.mode)&&(null===e&&!0!==t.memoizedProps.unstable_avoidThisFallback||0!==(1&vu.current)?rs===Qu&&(rs=Yu):(rs!==Qu&&rs!==Yu||(rs=Gu),0!==us&&null!==es&&(To(es,ns),Co(es,us)))),(n||o)&&(t.effectTag|=4),null);case 4:return wn(),Ol(t),null;case 10:return Zt(t),null;case 17:return It(t.type)&&Ft(),null;case 19:if(zt(vu),o=t.memoizedState,null===o)return null;if(a=0!==(64&t.effectTag),i=o.rendering,null===i){if(a)mr(o,!1);else if(rs!==Qu||null!==e&&0!==(64&e.effectTag))for(i=t.child;null!==i;){if(e=_n(i),null!==e){for(t.effectTag|=64,mr(o,!1),a=e.updateQueue,null!==a&&(t.updateQueue=a,t.effectTag|=4),null===o.lastEffect&&(t.firstEffect=null),t.lastEffect=o.lastEffect,o=t.child;null!==o;)a=o,i=n,a.effectTag&=2,a.nextEffect=null,a.firstEffect=null,a.lastEffect=null,e=a.alternate,null===e?(a.childExpirationTime=0,a.expirationTime=i,a.child=null,a.memoizedProps=null,a.memoizedState=null,a.updateQueue=null,a.dependencies=null):(a.childExpirationTime=e.childExpirationTime,a.expirationTime=e.expirationTime,a.child=e.child,a.memoizedProps=e.memoizedProps,a.memoizedState=e.memoizedState,a.updateQueue=e.updateQueue,i=e.dependencies,a.dependencies=null===i?null:{expirationTime:i.expirationTime,firstContext:i.firstContext,responders:i.responders}),o=o.sibling;return Mt(vu,1&vu.current|2),t.child}i=i.sibling}}else{if(!a)if(e=_n(i),null!==e){if(t.effectTag|=64,a=!0,n=e.updateQueue,null!==n&&(t.updateQueue=n,t.effectTag|=4),mr(o,!0),null===o.tail&&"hidden"===o.tailMode&&!i.alternate)return t=t.lastEffect=o.lastEffect,null!==t&&(t.nextEffect=null),null}else 2*ru()-o.renderingStartTime>o.tailExpiration&&1t)&&vs.set(e,t)))}}function Ur(e,t){e.expirationTimee?n:e,2>=e&&t!==e?0:e}function qr(e){if(0!==e.lastExpiredTime)e.callbackExpirationTime=1073741823,e.callbackPriority=99,e.callbackNode=$t(Vr.bind(null,e));else{var t=Br(e),n=e.callbackNode;if(0===t)null!==n&&(e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90);else{var r=Fr();if(1073741823===t?r=99:1===t||2===t?r=95:(r=10*(1073741821-t)-10*(1073741821-r),r=0>=r?99:250>=r?98:5250>=r?97:95),null!==n){var o=e.callbackPriority;if(e.callbackExpirationTime===t&&o>=r)return;n!==Yl&&Bl(n)}e.callbackExpirationTime=t,e.callbackPriority=r,t=1073741823===t?$t(Vr.bind(null,e)):Wt(r,Hr.bind(null,e),{timeout:10*(1073741821-t)-ru()}),e.callbackNode=t}}}function Hr(e,t){if(ks=0,t)return t=Fr(),No(e,t),qr(e),null;var n=Br(e);if(0!==n){if(t=e.callbackNode,(Ju&(Wu|$u))!==Hu)throw Error(r(327));if(lo(),e===es&&n===ns||Kr(e,n),null!==ts){var o=Ju;Ju|=Wu;for(var a=Yr();;)try{eo();break}catch(t){Xr(e,t)}if(Gt(),Ju=o,Bu.current=a,rs===Ku)throw t=os,Kr(e,n),To(e,n),qr(e),t;if(null===ts)switch(a=e.finishedWork=e.current.alternate,e.finishedExpirationTime=n,o=rs,es=null,o){case Qu:case Ku:throw Error(r(345));case Xu:No(e,2=n){e.lastPingedTime=n,Kr(e,n);break}}if(i=Br(e),0!==i&&i!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}e.timeoutHandle=Si(oo.bind(null,e),a);break}oo(e);break;case Gu:if(To(e,n),o=e.lastSuspendedTime,n===o&&(e.nextKnownPendingLevel=ro(a)),ss&&(a=e.lastPingedTime,0===a||a>=n)){e.lastPingedTime=n,Kr(e,n);break}if(a=Br(e),0!==a&&a!==n)break;if(0!==o&&o!==n){e.lastPingedTime=o;break}if(1073741823!==is?o=10*(1073741821-is)-ru():1073741823===as?o=0:(o=10*(1073741821-as)-5e3,a=ru(),n=10*(1073741821-n)-a,o=a-o,0>o&&(o=0),o=(120>o?120:480>o?480:1080>o?1080:1920>o?1920:3e3>o?3e3:4320>o?4320:1960*Uu(o/1960))-o,n=o?o=0:(a=0|l.busyDelayMs,i=ru()-(10*(1073741821-i)-(0|l.timeoutMs||5e3)),o=i<=a?0:a+o-i),10 component higher in the tree to provide a loading indicator or placeholder to display."+N(i))}rs!==Zu&&(rs=Xu),l=yr(l,i),f=a;do{switch(f.tag){case 3:u=l,f.effectTag|=4096,f.expirationTime=t;var w=Ar(f,u,t);ln(f,w); break e;case 1:u=l;var E=f.type,k=f.stateNode;if(0===(64&f.effectTag)&&("function"==typeof E.getDerivedStateFromError||null!==k&&"function"==typeof k.componentDidCatch&&(null===ms||!ms.has(k)))){f.effectTag|=4096,f.expirationTime=t;var _=Ir(f,u,t);ln(f,_);break e}}f=f.return}while(null!==f)}ts=no(ts)}catch(e){t=e;continue}break}}function Yr(){var e=Bu.current;return Bu.current=Cu,null===e?Cu:e}function Gr(e,t){eus&&(us=e)}function Jr(){for(;null!==ts;)ts=to(ts)}function eo(){for(;null!==ts&&!Gl();)ts=to(ts)}function to(e){var t=Fu(e.alternate,e,ns);return e.memoizedProps=e.pendingProps,null===t&&(t=no(e)),qu.current=null,t}function no(e){ts=e;do{var t=ts.alternate;if(e=ts.return,0===(2048&ts.effectTag)){if(t=br(t,ts,ns),1===ns||1!==ts.childExpirationTime){for(var n=0,r=ts.child;null!==r;){var o=r.expirationTime,a=r.childExpirationTime;o>n&&(n=o),a>n&&(n=a),r=r.sibling}ts.childExpirationTime=n}if(null!==t)return t;null!==e&&0===(2048&e.effectTag)&&(null===e.firstEffect&&(e.firstEffect=ts.firstEffect),null!==ts.lastEffect&&(null!==e.lastEffect&&(e.lastEffect.nextEffect=ts.firstEffect),e.lastEffect=ts.lastEffect),1e?t:e}function oo(e){var t=qt();return Vt(99,ao.bind(null,e,t)),null}function ao(e,t){do lo();while(null!==gs);if((Ju&(Wu|$u))!==Hu)throw Error(r(327));var n=e.finishedWork,o=e.finishedExpirationTime;if(null===n)return null;if(e.finishedWork=null,e.finishedExpirationTime=0,n===e.current)throw Error(r(177));e.callbackNode=null,e.callbackExpirationTime=0,e.callbackPriority=90,e.nextKnownPendingLevel=0;var a=ro(n);if(e.firstPendingTime=a,o<=e.lastSuspendedTime?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:o<=e.firstSuspendedTime&&(e.firstSuspendedTime=o-1),o<=e.lastPingedTime&&(e.lastPingedTime=0),o<=e.lastExpiredTime&&(e.lastExpiredTime=0),e===es&&(ts=es=null,ns=0),1u&&(c=u,u=l,l=c),c=Ue(w,l),f=Ue(w,u),c&&f&&(1!==k.rangeCount||k.anchorNode!==c.node||k.anchorOffset!==c.offset||k.focusNode!==f.node||k.focusOffset!==f.offset)&&(E=E.createRange(),E.setStart(c.node,c.offset),k.removeAllRanges(),l>u?(k.addRange(E),k.extend(f.node,f.offset)):(E.setEnd(f.node,f.offset),k.addRange(E)))))),E=[];for(k=w;k=k.parentNode;)1===k.nodeType&&E.push({element:k,left:k.scrollLeft,top:k.scrollTop});for("function"==typeof w.focus&&w.focus(),w=0;w=t&&e<=t}function To(e,t){var n=e.firstSuspendedTime,r=e.lastSuspendedTime;nt||0===n)&&(e.lastSuspendedTime=t),t<=e.lastPingedTime&&(e.lastPingedTime=0),t<=e.lastExpiredTime&&(e.lastExpiredTime=0)}function Co(e,t){t>e.firstPendingTime&&(e.firstPendingTime=t);var n=e.firstSuspendedTime;0!==n&&(t>=n?e.firstSuspendedTime=e.lastSuspendedTime=e.nextKnownPendingLevel=0:t>=e.lastSuspendedTime&&(e.lastSuspendedTime=t+1),t>e.nextKnownPendingLevel&&(e.nextKnownPendingLevel=t))}function No(e,t){var n=e.lastExpiredTime;(0===n||n>t)&&(e.lastExpiredTime=t)}function Po(e,t,n,o){var a=t.current,i=Fr(),l=su.suspense;i=jr(i,a,l);e:if(n){n=n._reactInternalFiber;t:{if(J(n)!==n||1!==n.tag)throw Error(r(170));var u=n;do{switch(u.tag){case 3:u=u.stateNode.context;break t;case 1:if(It(u.type)){u=u.stateNode.__reactInternalMemoizedMergedChildContext;break t}}u=u.return}while(null!==u);throw Error(r(171))}if(1===n.tag){var s=n.type;if(It(s)){n=Dt(n,s,u);break e}}n=u}else n=Al;return null===t.context?t.context=n:t.pendingContext=n,t=on(i,l),t.payload={element:e},o=void 0===o?null:o,null!==o&&(t.callback=o),an(a,t),Dr(a,i),i}function Oo(e){if(e=e.current,!e.child)return null;switch(e.child.tag){case 5:return e.child.stateNode;default:return e.child.stateNode}}function Ro(e,t){e=e.memoizedState,null!==e&&null!==e.dehydrated&&e.retryTime